Adult Circadian Behavior in Drosophila Requires Developmental Expression of cycle, But Not period
نویسندگان
چکیده
Circadian clocks have evolved as internal time keeping mechanisms that allow anticipation of daily environmental changes and organization of a daily program of physiological and behavioral rhythms. To better examine the mechanisms underlying circadian clocks in animals and to ask whether clock gene expression and function during development affected subsequent daily time keeping in the adult, we used the genetic tools available in Drosophila to conditionally manipulate the function of the CYCLE component of the positive regulator CLOCK/CYCLE (CLK/CYC) or its negative feedback inhibitor PERIOD (PER). Differential manipulation of clock function during development and in adulthood indicated that there is no developmental requirement for either a running clock mechanism or expression of per. However, conditional suppression of CLK/CYC activity either via per over-expression or cyc depletion during metamorphosis resulted in persistent arrhythmic behavior in the adult. Two distinct mechanisms were identified that may contribute to this developmental function of CLK/CYC and both involve the ventral lateral clock neurons (LN(v)s) that are crucial to circadian control of locomotor behavior: (1) selective depletion of cyc expression in the LN(v)s resulted in abnormal peptidergic small-LN(v) dorsal projections, and (2) PER expression rhythms in the adult LN(v)s appeared to be affected by developmental inhibition of CLK/CYC activity. Given the conservation of clock genes and circuits among animals, this study provides a rationale for investigating a possible similar developmental role of the homologous mammalian CLOCK/BMAL1 complex.
منابع مشابه
Larval ethanol exposure alters adult circadian free-running locomotor activity rhythm in Drosophila melanogaster.
Alcohol consumption causes disruptions in a variety of daily rhythms, including the sleep-wake cycle. Few studies have explored the effect of alcohol exposure only during developmental stages preceding maturation of the adult circadian clock, and none have examined the effects of alcohol on clock function in Drosophila. This study investigates developmental and behavioral correlates between lar...
متن کاملCycling vrille Expression Is Required for a Functional Drosophila Clock
We identified a novel regulatory loop within Drosophila's circadian clock. A screen for clock-controlled genes recovered vrille (vri), a transcription factor essential for embryonic development. vri is expressed in circadian pacemaker cells in larval and adult brains. vri RNA levels oscillate with a circadian rhythm. Cycling is directly regulated by the transcription factors dCLOCK and CYCLE, w...
متن کاملLarval ethanol exposure alters free-running circadian rhythm and per Locus transcription in adult D. melanogaster period mutants.
Alcohol consumption causes disruptions in a variety of daily rhythms, including the circadian free-running rhythm. A previous study conducted in our laboratories has shown that larval ethanol exposure alters the free-running period in adult Canton-S Drosophila melanogaster. Few studies, however, have explored the effect of alcohol exposure on organisms exhibiting circadian periods radically dif...
متن کاملTemperature-dependent resetting of the molecular circadian oscillator in Drosophila.
Circadian clocks responsible for daily time keeping in a wide range of organisms synchronize to daily temperature cycles via pathways that remain poorly understood. To address this problem from the perspective of the molecular oscillator, we monitored temperature-dependent resetting of four of its core components in the fruitfly Drosophila melanogaster: the transcripts and proteins for the cloc...
متن کاملA novel circadianly expressed Drosophila melanogaster gene dependent on the period gene for its rhythmic expression.
The Drosophila melanogaster period (per) gene is required for expression of endogenous circadian rhythms of locomotion and eclosion. per mRNA is expressed with a circadian rhythm that is dependent on Per protein; this feedback loop has been proposed to be essential to the central circadian pacemaker. This model would suggest the Per protein also controls the circadian expression of other geneti...
متن کامل